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Finite-size scaling for quantum chains with an oscillatory 
energy gap 

C Hoeger, G von Gehlen and V Rittenberg 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D-5300 Bonn 1, West Germany 

Received 26 July 1984, in final form 20 November 1984 

Abstract. We show that the existence of zeros of the energy gap for finite quantum chains 
is related to a non-vanishing wavevector. Finite-size scaling ansatze are formulated for 
incommensurable and oscillatory structures. The ansatze are verified in the one-dimensional 
X Y  model in a transverse field. 

1. Introduction 

Recently two of us (von Gehlen and Rittenberg 1984a) have studied the quantum 
Hamiltonian of the three-states asymmetric clock model in order to clarify its phase 
structure. This Hamiltonian was obtained considering the transfer matrix with an 
asymmetric interaction along the x axis, a symmetric one along the T axis and taking 
the continuous T limit (Kogut 1979). We have then performed a duality transformation 
in order to get a Hamiltonian which conserves parity. We have computed the spectrum 
of this Hamiltonian for finite chains in order to apply finite-size scaling (Hamer and 
Barber 1981, Nightingale 1982) and noticed that the energy gap oscillates. It has zeros 
and the number of zeros increases with the size N of the chain (the lowest energy 
states have zero momenta). It was later noticed by von Gehlen (1984) that similar 
zeroes of the energy gap occur in other 3-states (Howes et al 1983) and 4-states (von 
Gehlen and Rittenberg 1984b) systems. (The latter systems cannot be obtained from 
the continuous T limit of two-dimensional spin systems.) We would like to point out 
that level crossing for finite chains does not imply any pathology. When we have taken 
the continuous 7 limit of the transfer matrix we have neglected terms which would 
prevent the crossings. 

In order to get a better insight into the problem of level crossings and to learn how 
to apply finite-size scaling for this case, in this paper we consider the transverse X Y  
( T X Y )  model which also presents an oscillatory energy gap. 

The aim of our paper is to use the TXY model as a laboratory from which one 
can abstract the following information: which conclusions can be drawn about the 
infinite system from the behaviour of energy crossings of the finite chains. In this way 
one might settle, for example, the standing controversy about the existence of a Lifshitz 
point in the 2~ asymmetric clock model. 

The paper is organised as follows. In 0 2 we sum up the known properties of the 
TXY model. We then illustrate the phenomena of energy crossings for finite chains. 
In 0 3 we apply the ideas of finite-size scaling to systems with energy crossings and 
notice a hyperscaling-type relation among the critical exponents. In 0 4 we re-obtain 
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the critical exponents given in § 2 using the methods of § 3. Our results are summarised 
in $ 5 .  

As we have already mentioned, we consider the TXY model as a toy model for 
more complex systems. In order to get an  insight on the convergence of the finite-size 
scaling method, in the appendix we study short chains and  illustrate the application 
of the Vanden Broeck and Schwartz (1979) approximants. 

2. The transverse X Y  model 

2.1. Summary of known results f o r  the thermodynamic limit 

The model is defined by the one-dimensional Hamilton operator: 

where ah are Pauli matrices and 0 S y S 1. Through a Jordan-Wigner transformation 
this system can be diagonalised (Katsura 1962, Niemeyer 1967, Barouch and McCoy 
1971) and its various properties can be studied analytically. It is known that the 
Hamiltonian (2.1) commutes with the transfer matrix of the two-dimensional Ising 
model on a square lattice (Suzuki 1971) for g 2 +  y2 > 1 and through a dual transforma- 
tion with the transfer matrix of the k ing  model on a triangular lattice (Stephen and 
Mittag 1972). 

In equation (2.1) the coupling constant g plays the role of a temperature-like 
variable (Suzuki 1971). 

We notice that for y # 0 the system has Z2 symmetry since the operator 

c=nu; c2= 1 
n 

commutes with the Hamiltonian. It is convenient to define a charge operator 

1-c 
Q=- 

2 (2.3) 

whose eigenvalues are 0 and 1. 

operator 
For y = 0 the system has a continuous (O(2)) symmetry since in this case also the 

C==,&T; 
n 

(2.4) 

commutes with H. 
The phase diagram (Barouch and McCoy 1971) of the system (2.1) is shown in 

figure 1 .  The line g = 1 represents an  Ising transition which is of no particular interest 
for us here. We will rather concentrate on the circle g 2 +  y2 = 1, which is a type of 
disorder line on which the nature of the correlation function changes. The line y = 0 
is special (due to a different symmetry) and  will be considered separately. 

We start with the case y = 0. Here it is known (Jullien and Pfeuty 1979) that in 
the vicinity of the critical point g ,  = 1 the energy gap behaves like 

G = / g - g , I ”  ( 2 . 5 )  
with s = 1. 
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Figure 1. Phase diagram of the transverse XY model. 

The specific heat is zero for g > g, and for g < g, it is 

-1 d2 2 
N dg2 n(gf-g') ' / '  

C =--E= 

which implies an exponent (Y = ( E  is the ground-state energy). Below g,, the system 
is in an incommensurable phase with a wavevector vanishing like 

K - ( g , - g ) "  (2.7) 

with v = i. 

below g = 1: 
We now consider the case y # 0. The system has a non-vanishing order parameter 

(Notice that for y = 0, m, vanishes.) 
The two-spins correlation function: 

has the following large R behaviour in the three phases: 

pxx(R)-A,R-"2 exp(-RI[) g'l 

p""(R) - A2R-2 exp(-ZR/[) 1 - y2< g2< 1 (2.10b) 

(2.10c) p"" (R)  - A 3 K 2  exp(-ZR/[) Re[B exp(iKR)] O <  g 2 <  1 - y 2 .  

Here AI,  A2 and B are constants and the correlation length [ is 

(2.1 1 b) 
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Notice that for g < (1 - y2)I”,  the correlation length is independent of g and is 
g-dependent for g>  ( 1  - Y ~ ) ” ~ .  If one is interested in the point g = ( 1  - y2)I’* itself 
Barouch and McCoy (1971) have shown that in this point all correlation functions are 
independent of R (the limits R -+ 03 and g + ( 1 - y2)1’2 are not invertible). In conclusion, 
in the whole region g < 1, the correlation length is finite. There is however another 
length which diverges in this region: the inverse of the wavevector which is: 

Notice that with g ,  = ( 1  - y’)”2, we have 

K - ( g , - g ) ”  

with v = $. We also have 

(2.12) 

(2.13) 

C, regular. (2.14) 

2.2. Zeros of the energy gap f o r j n i t e  chains 

We would now like to illustrate how the various phases described above are reflected 
in the properties of the energy gap for finite chains. If we denote by E o ( E , )  the lowest 
energy states in the charge sectors O(1) (see equation (2.3) for the definition of the 
charge), their expressions can readily be obtained from Katsura (1962): 

where 

A(cp) =[(cos cp - g ) ’ +  y 2  sin’ cp]”* 

(we have taken periodic boundary conditions). 

(2.16) 

The energy gap G is 

G = I A E ~  (2.17) 

where 

A E  =El  - Eo. (2.18) 

We first start with the case y=O. In figure 2 we show the behaviour of Eo and El 
as a function of g for N = 8. One observes that for g > 1, Eo is the ground-state energy. 
With decreasing g, a first crossing occurs at g = 1 when El becomes the ground-state 
energy. There is then a change in slope for Eo (which is the exited state) at g = 0.9 
which occurs due to a crossing of levels in the charge zero sector and at g Z O . 8 ,  Eo 
becomes the ground-state energy, etc. In figure 3 we show A E  for N = 8 and 10. We 
observe that if, for N = 8, A E  has changed signs four times then for N = 10, A E  
changes signs five times. At the same time we see that the first change in signs occurs 
at g = 1 in both cases but the next change in signs occurs at a larger value of g for 
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5 

Figure 2. The lowest energy states E, and E ,  in the charge sectors 0 and 1 as a function 
of g for N = 8. 

Figure 3. A E  as a function of g (y = 0 )  for N = 8 (-) and 10 (---I. 

N = 10 than for N = 8. The same trend is observed for larger N :  the number of zeros 
increases and the second zero gets closer to g = 1. As will be seen in $ 3 ,  all these 
features can nicely be interpreted in the finite-size scaling property of the energy gap. 

We now look at the specific heat 

(2.19) 

Here EN is the ground-state energy of the N sites chain. Since the ground state 
oscillates between Eo and E ,  (with straight lines between the crossings as shown in 
figure 2), the specific heat is a sum of S functions. This is shown in figure 4 in the 
case N = 12. In order to illustrate how the thermodynamic limit ( N +  CO) is obtained, 
in figure 4 we have smeared the contribution of the S functions getting step functions. 
The continuous curve is the thermodynamic limit (see equation (2.6)). 

Let us consider the case y # O .  In figure 5 we show AE as a function of g for 
various N in the case y = 0.707. We observe that for g g, = ( 1 - y2)"2 the pattern of 
the zeros is similar to the case y = 0 (figure 3). Two major differences can, however, 
be noticed. First we see that the amplitudes of the oscillations decrease much faster 
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Figure 4. The specific heat C, for N = 12 is a succession of S functions. Smearing out 
the contributions of the S functions one gets a good approximation to the thermodynamic 
limit (smooth curve). 

N 

0 0 4 -  

0 0 3 -  

0 0 2 -  

\ 0.5 I 

Figure 5. A €  as a function of g for N = 5, 7 and I O .  y = 0.707, g, = ( 1  - y 2 ) ” * .  

with N than in figure 3. Actually the decrease is exponential in one case and algebraic 
in the other. The second difference is that there are no more energy crossings within 
the same charge sector ( A E  is obtained through the interplay ofjust  two energy levels). 
This makes the A E  function to be smooth in g. 

In order to illustrate the fact that the oscillations of the energy gap are not an  
artefact of our  choice of periodic boundary, in figure 6 we show A E  for y = 0.707 and 
N = 9 in the case of free boundary conditions. The oscillations are there all right, the 
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3 002 . 

3 001 

A €  

0~0002 

- 0.0002 

r - 0 . 9 0 1  

Figure 6. AE as a function of g for N = 9 and y = 0.707 (free boundary conditions) 

single difference is that the first zero does not appear at g = gc but at a slightly smaller 
value of g. 

We can now bring together the two halves of this section with an  interesting 
conclusion: the energy gap oscillates in the regions with a non-vanishing wavevector. 
Based on this observation we are going to write the finite-size scaling prescriptions for 
the phase transition which occurs where the wavevector vanishes. This is the circle 
g 2 +  y 2  = 1 in our model. 

3. Finite-size scaling 

We now formulate the finite-size scaling ansatz in the case where the wavevector K 
vanishes like 

K = ( g c -  g ) " .  

We are going to distinguish between two cases. In the first one (this corresponds 
to y = O  in our toy model) the correlation function has an algebraic decay (there is 
no correlations length). The second case ( y # 0 in our model) corresponds to a situation 
where the correlation length 6 is finite at the critical point and equal to tC. 

3.1. The incommensurable phase 

We define a scaling variable in the standard way: 

z =  " ' " ( g , - g )  (3.1) 
and  make the usual ansatz for the scaling limit of the specific heat: 

C , ( g ,  N )  = N " ' " F ( z )  (3.2) 
( N  --* a, z fixed). We also assume as usual that 

Z - X  lim F (  z )  = Az-". (3.3) 



1820 C Hoeger, G uon Gehlen and V Rittenberg 

We now characterise the incommensurate phase through the specific expression of 
F (  z ) :  

X 

F ( z ) =  c k 8 ( z - z k )  
k = O  

where c k  are constants. 
In order to match equations (3.3) and (3.4) we have 

The specific heat for a chain with N sites has the expression 
n ( N )  

c u ( g ,  N ) =  c k ( N ) 8 ( g - g k ( N ) ) .  
k=O 

(3.4) 

(3.5) 

Here n( N )  + 1 represents the number of zeros of the energy gap (the zeros are located 
at gk( N ) ) .  In writing equation (3.5) we have disregarded the smooth part of C , ( g ,  N ) .  

We now compare equations (3.2), (3.4) and (3.5) and obtain 

( 3 . 6 ~ )  

(3.6b) 

Equations (3.6) allow us to determine U and C Y .  Let g o ( N )  and g l ( N )  be the 
positions of the first two zeros of the energy gap and Z( N )  their difference: 

Z ( N )  = g o ( N ) - g , ( N ) .  (3.7) 

From equations ( 3 . 6 ~ )  and (3.7) we get estimates for U :  

(3.8) 

The value of g ,  can be obtained using equation ( 3 . 6 ~ )  and the values of g o ( N ) .  
Making a fit to go( N )  one determines go, zO and one gets an independent determination 
of v. 

We now use equation (3.6b) in order to get estimates for the critical exponent C Y :  

We now consider the function A E ( g ,  N )  (see equation (2.18)). In the scaling limit 

A E ( g ,  N )  = N - ” ” E ( z )  (3.10) 

we have 

where E ( z )  is an oscillating function with zeros at zk. For large value of z we have 

E ( z )  = A l z S l h ( z )  (3.1 1 )  

where h ( z )  is an oscillating function with I h ( z ) l S  1. If in the vicinity of z = O  we have 

h (  z )  = A2zs2 (3.12) 
then 

s = s , + s 2  (3.13) 
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and 

From equation (3.10) we can get estimates for the critical exponent s: 

(3.15) 
) s N = 1  - v N l n ( G A E ( g , ( N ) ,  d N ) l $ h E ( g , ( N - l ) ,  N-1) ( l n ( N / N - l ) ) - ’ .  

Let us observe that the coefficients c k ( N )  in equation (3.5) are 

(3.16) 

where d is the number of dimensions of the quantum chain. The first equality in (3.16) 
implies the assumption that Eo and E ,  are smooth functions at g = gk. If we introduce 
the expression (3.16) for c L ( N )  in equation (3.9) and compare the result with the 
expression (3.15) we obtain (see also Hornreich et a1 1975) 

CY = 2 - ~ - d v  (3.17) 

This relation is of course verified by the critical exponents of the TXY model with 
for any N. 

y = o .  

3.2. The oscillatory phase 

Since in this phase the correlation length is non-zero at g, but equal to &, we will 
make a different ansatz for the scaling functions. We will replace equation (3.10) by 
the assumption 

(3.18) 

where w is unknown. The function g ( z )  will again have zeros at 2,. The critical 
exponent v and the critical point g, can be determined as in 0 3.1 (one uses equations 
( 3 . 6 ~ )  and (3.8)). The values of 5, and w can be determined from a fit at fixed z. 

AE(g, N )  = N-” e x p ( - N / & ) i ( z )  

4. Application of finite-size scaling to the TXY model 

In this section we verify the finite-size scaling ansatz of § 3 in the case of the T X Y  
model. We consider separately the cases y = 0 and y # 0. 

4.1. The y=O case 

From equations (2.15) and (2.16) we conclude that for a given N, AE has [;(N+l)] 
zeros ( [ I ]  denotes the integer part of I )  that we are going to denote by 
go, gl ,  . . . , g[(N+1)/2]. The first zero is fixed (independent of N ) :  

g,= 1. (4.1) 

gc= 1 2, = 0. (4.2) 

From equation (3.6a) we conclude that 
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For the other zeros we have 

N 

N 

We now take the large N limit of equation (4.3) and get 

Thus we have 

The value obtained for v is in agreement with equation (2.7). 
The expression of the specific heat is 

(4.3) 

(4.4) 

This implies (see equation (3.5)) that 

C k ( N ) = 2 / N  (4.7) 

and using equation (3.6b) 

We also have (see equation (3.5)) 

A ,  = O  A 2  = 2. (4.9) 
The scaling function F ( z )  from equation (3.2) is 

X 

F ( z ) = 2  S(Z-ZJ(). 
k = O  

(4.10) 

One can use equation (3.17) to get s =  1. 

(3.13) one finds 
Finally, in figure 7 we show the scaling function E ( z ) .  In agreement with equation 

(4.1 1 )  

We have thus shown that for the one-dimensional TXY model finite-size scaling 
works and gives the correct critical exponents. In the appendix we discuss different 
aspects of the convergence of the estimates v N  for v obtained from short chains. 

s, = s2 = ;. 

4.2. The y # O  case 

In figure 8 we show the locations of the zeros of AE for N = 9 as a function of y. 
One observes that their number for y f 0 is the same as for y = 0. In the appendix we 
show that using equation ( 3 . 6 ~ )  one finds v = &  in agreement with equation (2.13). In 
order to check in detail our ansatz (3.18) for the case y = 0.707 we have fitted 5, and 
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Figure 7. The scaling function E ( z )  from h € ( g ,  N )  = N-’€ ( z )  ( y  = 0). 

0.5 1.0 
4 

Figure 8. The locations of the zeroes of AE in the y, g plane for N = 9. 

w for the point z = 0.5. One finds 

6,’ = 0.8815 * 0.0007 w = 1 .oo * 0.02. (4.12) 

The value for tC is in excellent agreement with the value derived from equation (2.1 l b )  
which is 6,’=0.881 16. 

With 6, and w known, one can derive the scaling function E( z )  of equation (3.18). 
This function is shown in figure 9. 

5. Conclusions 

We have shown that in a phase with a non-vanishing wavevector K which vanishes 
at  the critical point like K = ( g c  - g )  ”, one can make finite-size scaling ansatz both for 
incommensurate phases as well as for oscillatory phases (in this case the correlation 
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Figure 9. The scaling function k(z) from AE(g, N ) = e x p ( - N / t , ) E ( z ) / N  in the case 
y = 0.707. 

length stays finite at g c ) .  The derivation of the critical exponents exploits the fact that 
the energy gap has zeros whose number depends on the number N of sites in the 
quantum chain. 

An interesting open question is to find out up to how many dimensions finite-size 
scaling works in this case. 

The methods presented in this paper have been applied by von Gehlen et a1 (1984) 
to the 3-states asymmetric clock model. This study is complementary to the work of 
Duxbury et a1 (1984) where the transfer matrix was taken in the orthogonal direction. 
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Appendix. Determination of the critical exponent v from short quantum chains 

The aim of this appendix is to find out the convergence of the estimates for the critical 
exponents of the TXY model. This exercise is interesting because we have in mind 
applications to many-states systems where it is very difficult to diagonalise long chains. 
We are going to consider only estimates for v. 

We start with the y = 0 case (periodic boundary conditions). One uses equations 
(3 .7)  and (3.8) with g , ( N )  = 1 and one finds the estimates given in table Al .  One can 
get better estimates if one considers the quantities 

X ( N ) = ( N 2 - 9 )  -- 
(g , :N)  

where 
lim X( N )  =  AN^-'/" 

N- ,X  
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Table A l .  Estimates for u ( y = O  and periodic boundary conditions). u y  is defined by 
equation (3.8) and i, by equation (A2). 

N i, -0.5 u., -0.5 

4 
5 
6 
7 
8 
9 

I O  
1 1  

2.15070 X IO-’ 
1 . 2 4 3 1 4 ~  IO-’ 2,18223 x 
8.13857 x 1.42565 x IO-2 
5.75416 X 1.00680 x IO-2  
4.28837 X 7.49800 X 

3.32142 X 5.80462 X 

2.64937 X 4.62861 X 

2.16307 x 3.77812 x IO-’ 

The quantities X ( N )  contain the information that for N = 3 ,  g , ( 3 ) = 0 .  Other 
threshold factors like N( N - 3) instead of N 2  -9 can be used as well. We denote by 
iN the estimates obtained from equation (A2) and their values are also shown in table 
AI. One notices that they are closer to the correct value v = { than the estimates v M  

In order to improve the estimates we have tried the Vanden Broeck and Schwartz 
(1979) method (see also Hamer and Barber 1981). We denote by [ N ,  L] ( L =  I ,  2 , .  . .) 
the Lth approximants. They are defined through the recurrence relations: 

[ N ,  - l ] = m  LN901= v N  

( [ N ,  L+ I]-[N, L]) - ’+([N ,  L -  I]-[N, L])- ’  (A3) 

= ( [ N + l ,  L ] - [ N ,  L])-’+([N-l,  L ] - [ N ,  I,])-’. 

In tables A2 and A3 we give the approximants up to L = 4  and one notices that 
their precision is remarkable. 

In table A4 we give the estimates v N  and i, in the case of free boundary conditions 
( y = 0). As usual they are poorer than those for periodic boundary conditions. The 
estimates f i N  are better than vN. An amusing phenomenon appears now if one takes 
the Vanden Broeck-Schwartz approximants for vN and C,w: they are excellent for vN 
and poor for iN. 

Table A2. Vanden Broeck-Schwartz approximants for u y  -0.5 (table A l )  

~ ~~~~~~~~~ 

4.87322 X 

3.41716 x 2.21677 X IO-’ 
2.53353 X IO-’ 1.35230 X IO-’ 2.1029 X 

1.95548 X IO-’ 8 . 6 1 2 4 ~  
1.55602 x IO-’ 

Table A3. Vanden Broeck-Schwartz approximants for Cv -0.5 (table A l ) .  

2.77502 X IO-* 

1.44708 X 7.065 X IO-’ 1.078 X IO-’ 
1 . 1  1777 x 4.492 X IO-’ 
8.89909 X IO-’ 

1.94953 x IO+ 1 .I589 x 1 0 P  
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Table A4. Estimates for U ( y  = 0 and free boundary conditions). 

N i,v - 0.5 U. - 0.5 

3 -5.46228 X IO- ’  2.58162 x IO-’ 
4 -5.16952 X IO-’ 1.72746 x IO-’ 
5 -4.79833 X 1.29399 x I O - ’  
6 -4.43840 X IO-’ 1.03282 x I O - ’  
7 -4.1 1175 x 8.58634 x 
8 - 3 . 8 2 1 3 6 ~  IO-’ 7.34340 x IO-’ 
9 -3.56457 X IO-’ 6.41268 x 

We now consider the y # 0 case. In table A5 we give the estimates for vN and C N  
for y=0.707.  The quality of the estimates compares with that of the case y = O  with 
free boundary conditions. In fact, we have also taken much longer chains and got 
very close to v = 0.5. 

Table AS. Estimates for Y ( y = 0.707 and periodic boundary conditions) 

N uN - 0.5 ir, -0.5 

5 -1.5648XIO-’ 2.8765 x IO-’ 
6 -2.2135 X 2.8506 x IO-’ 
7 -2.4447 X IO-2 2.7740 x IO-’ 
8 -2.4930 x IO-’ 2.6655 x IO-* 
9 -2.4561 X I O - 2  2.5427 x 

I O  -2.3784 X 2.4 I67 x 1 0-’ 
I I  -2.2856 X IO-* 2.2936 X IO-‘ 
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